English

Information

  • 简体中文
  • 繁體中文
  • 繁體中文
  • 繁體中文
  • Nederlands
  • Nederlands
  • English
  • English
  • English
  • Français
  • Deutsch
  • Deutsch
  • Deutsch
  • Magyar
  • Italiano
  • 한국어
  • Norsk
  • Polska
  • Português
  • Português
  • Русский
  • Español
  • Svenska

The equal temperament

The tuning or temperament of a scale is the way the frequencies of the notes are chosen. In Western music the equal temperament is most popular. Other temperaments are for example: the just intonation, the Pythagorean tuning, the mean tone temperament, the well temperament and the 31 equal temperament.

An octave is divided into 12 'proportionally increasing' distances. The ratio of the frequencies of two successive semitones is always the same (approximately 1.0594631). Because of this, all intervals (second, third, fourth, fifth, sixth, seventh), except the octave, deviate from the just tuning. They cause beating. All equally named intervals sound equally false (they beat). The advantage of this tuning is that it remains the same when switched to another tone type (a number of semitones higher or lower), and it is therefore not needed to tune the instrument differently.

Below an overview is given of the intervals and the differences of the equal and the just temperament. The just temperament is the way to construct a scale where the frequency ratios are simple integers. This produces music which is experienced as pure (not false).
Interval Equal Just
Unison1.0001.0001/10.0%
Minor second1.0591.06716/15-0.7%
Major second1.1221.1259/8-0.2%
Minor third1.1891.2006/5-0.9%
Major third1.2601.2505/4+0.8%
Fourth1.3351.3334/3+0.1%
Augmented fourth1.4141.4007/5+1.0%
Fifth1.4981.5003/2-0.1%
Minor sixth1.5871.6008/5-0.8%
Major sixth1.6821.6675/3+0.9%
Minor seventh1.7821.77816/9+0.2%
Major seventh1.8881.87515/8+0.7%
Octave2.0002.0002/10.0%

Frequency table of the notes

# Tone Octave Frequency (Hz)
1C016.3516
2C#017.3239
3D018.3540
4D#019.4454
5E020.6017
6F021.8268
7F#023.1247
8G024.4997
9G#025.9565
10A027.5000
11A#029.1352
12B030.8677
# Tone Octave Frequency (Hz)
13C132.7032
14C#134.6478
15D136.7081
16D#138.8909
17E141.2034
18F143.6535
19F#146.2493
20G148.9994
21G#151.9131
22A155.0000
23A#158.2705
24B161.7354
# Tone Octave Frequency (Hz)
25C265.4064
26C#269.2957
27D273.4162
28D#277.7817
29E282.4069
30F287.3071
31F#292.4986
32G297.9989
33G#2103.8262
34A2110.0000
35A#2116.5409
36B2123.4708
# Tone Octave Frequency (Hz)
37C3130.8128
38C#3138.5913
39D3146.8324
40D#3155.5635
41E3164.8138
42F3174.6141
43F#3184.9972
44G3195.9977
45G#3207.6523
46A3220.0000
47A#3233.0819
48B3246.9417
# Tone Octave Frequency (Hz)
49C4261.6256
50C#4277.1826
51D4293.6648
52D#4311.1270
53E4329.6276
54F4349.2282
55F#4369.9944
56G4391.9954
57G#4415.3047
58A4440.0000
59A#4466.1638
60B4493.8833
# Tone Octave Frequency (Hz)
61C5523.2511
62C#5554.3653
63D5587.3295
64D#5622.2540
65E5659.2551
66F5698.4565
67F#5739.9888
68G5783.9909
69G#5830.6094
70A5880.0000
71A#5932.3275
72B5987.7666
# Tone Octave Frequency (Hz)
73C61,046.5023
74C#61,108.7305
75D61,174.6591
76D#61,244.5079
77E61,318.5102
78F61,396.9129
79F#61,479.9777
80G61,567.9817
81G#61,661.2188
82A61,760.0000
83A#61,864.6550
84B61,975.5332
# Tone Octave Frequency (Hz)
85C72,093.0045
86C#72,217.4610
87D72,349.3181
88D#72,489.0159
89E72,637.0205
90F72,793.8259
91F#72,959.9554
92G73,135.9635
93G#73,322.4376
94A73,520.0000
95A#73,729.3101
96B73,951.0664
# Tone Octave Frequency (Hz)
97C84,186.0090
98C#84,434.9221
99D84,698.6363
100D#84,978.0317
101E85,274.0409
102F85,587.6517
103F#85,919.9108
104G86,271.9270
105G#86,644.8752
106A87,040.0000
107A#87,458.6202
108B87,902.1328
# Tone Octave Frequency (Hz)
109C98,372.0181
110C#98,869.8442
111D99,397.2726
112D#99,956.0635
113E910,548.0818
114F911,175.3034
115F#911,839.8215
116G912,543.8540
117G#913,289.7503
118A914,080.0000
119A#914,917.2404
120B915,804.2656
Navigate to the top of this page